Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neurobiol Dis ; 188: 106341, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918757

RESUMO

The antagonistic effect of adenosine on dopaminergic transmission in the basal ganglia indirect motor control pathway is mediated by dopamine D2 (D2R) and adenosine A2A (A2AR) receptors co-expressed on medium spiny striatal neurons. The pathway is unbalanced in Parkinson's disease (PD) and an A2AR blocker has been approved for use with levodopa in the therapy of the disease. However, it is not known whether the therapy is acting on individually expressed receptors or in receptors forming A2A-D2 receptor heteromers, whose functionality is unique. For two proteins prone to interact, a very recently developed technique, MolBoolean, allows to determine the number of proteins that are either non-interacting or interacting. After checking the feasibility of the technique and reliability of data in transfected cells and in striatal primary neurons, the Boolean analysis of receptors in the striatum of rats and monkeys showed a high percentage of D2 receptors interacting with the adenosine receptor, while, on the contrary, a significant proportion of A2A receptors do not interact with dopamine receptors. The number of interacting receptors increased when rats and monkeys were lesioned to become a PD model. The use of a tracer of the indirect pathway in monkeys confirmed that the data was restricted to the population of striatal neurons projecting to the GPe. The results are not only relevant for being the first study quantifying individual versus interacting G protein-coupled receptors, but also for showing that the D2R in these specific neurons, in both control and PD animals, is under the control of the A2AR. The tight adenosine/dopamine receptor coupling suggest benefits of early antiparkinsonian treatment with adenosine receptor blockers.


Assuntos
Doença de Parkinson , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Espinhosos Médios , Adenosina/metabolismo , Reprodutibilidade dos Testes , Corpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Primatas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo
2.
J Mol Med (Berl) ; 101(12): 1587-1601, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819378

RESUMO

The SCN1A gene encodes the alpha subunit of a voltage-gated sodium channel (Nav1.1), which is essential for the function of inhibitory neurons in the brain. Mutations in this gene cause severe encephalopathies such as Dravet syndrome (DS). Upregulation of SCN1A expression by different approaches has demonstrated promising therapeutic effects in preclinical models of DS. Limiting the effect to inhibitory neurons may contribute to the restoration of brain homeostasis, increasing the safety and efficacy of the treatment. In this work, we have evaluated different approaches to obtain preferential expression of the full SCN1A cDNA (6 Kb) in GABAergic neurons, using high-capacity adenoviral vectors (HC-AdV). In order to favour infection of these cells, we considered ErbB4 as a surface target. Incorporation of the EGF-like domain from neuregulin 1 alpha (NRG1α) in the fiber of adenovirus capsid allowed preferential infection in cells lines expressing ErbB4. However, it had no impact on the infectivity of the vector in primary cultures or in vivo. For transcriptional control of transgene expression, we developed a regulatory sequence (DP3V) based on the Distal-less homolog enhancer (Dlx), the vesicular GABA transporter (VGAT) promoter, and a portion of the SCN1A gene. The hybrid DP3V promoter allowed preferential expression of transgenes in GABAergic neurons both in vitro and in vivo. A new HC-AdV expressing SCN1A under the control of this promoter showed improved survival and amelioration of the epileptic phenotype in a DS mouse model. These results increase the repertoire of gene therapy vectors for the treatment of DS and indicate a new avenue for the refinement of gene supplementation in this disease. KEY MESSAGES: Adenoviral vectors can deliver the SCN1A cDNA and are amenable for targeting. An adenoviral vector displaying an ErbB4 ligand in the capsid does not target GABAergic neurons. A hybrid promoter allows preferential expression of transgenes in GABAergic neurons. Preferential expression of SCN1A in GABAergic cells is therapeutic in a Dravet syndrome model.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Animais , Camundongos , Modelos Animais de Doenças , DNA Complementar , Epilepsias Mioclônicas/terapia , Epilepsias Mioclônicas/tratamento farmacológico , Neurônios GABAérgicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fenótipo
3.
Life (Basel) ; 12(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430993

RESUMO

Rare diseases, especially monogenic diseases, which usually affect a single target protein, have attracted growing interest in drug research by encouraging pharmaceutical companies to design and develop therapeutic products to be tested in the clinical arena. Acute intermittent porphyria (AIP) is one of these rare diseases. AIP is characterized by haploinsufficiency in the third enzyme of the heme biosynthesis pathway. Identification of the liver as the target organ and a detailed molecular characterization have enabled the development and approval of several therapies to manage this disease, such as glucose infusions, heme replenishment, and, more recently, an siRNA strategy that aims to down-regulate the key limiting enzyme of heme synthesis. Given the involvement of hepatic hemoproteins in essential metabolic functions, important questions regarding energy supply, antioxidant and detoxifying responses, and glucose homeostasis remain to be elucidated. This review reports recent insights into the pathogenesis of acute attacks and provides an update on emerging treatments aimed at increasing the activity of the deficient enzyme in the liver and restoring the physiological regulation of the pathway. While further studies are needed to optimize gene therapy vectors or large-scale production of liver-targeted PBGD proteins, effective protection of PBGD mRNA against the acute attacks has already been successfully confirmed in mice and large animals, and mRNA transfer technology is being tested in several clinical trials for metabolic diseases.

4.
Biomedicines ; 10(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453499

RESUMO

It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.

5.
Sci Transl Med ; 14(627): eabc0700, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020410

RESUMO

Correction of enzymatic deficits in hepatocytes by systemic administration of a recombinant protein is a desired therapeutic goal for hepatic enzymopenic disorders such as acute intermittent porphyria (AIP), an inherited porphobilinogen deaminase (PBGD) deficiency. Apolipoprotein A-I (ApoAI) is internalized into hepatocytes during the centripetal transport of cholesterol. Here, we generated a recombinant protein formed by linking ApoAI to the amino terminus of human PBGD (rhApoAI-PBGD) in an attempt to transfer PBGD into liver cells. In vivo experiments showed that, after intravenous injection, rhApoAI-PBGD circulates in blood incorporated into high-density lipoprotein (HDL), penetrates into hepatocytes, and crosses the blood-brain barrier, increasing PBGD activity in both the liver and brain. Consistently, the intravenous administration of rhApoAI-PBGD or the hyperfunctional rApoAI-PBGD-I129M/N340S (rApoAI-PBGDms) variant efficiently prevented and abrogated phenobarbital-induced acute attacks in a mouse model of AIP. One month after a single intravenous dose of rApoAI-PBGDms, the protein was still detectable in the liver, and hepatic PBGD activity remained increased above control values. A long-lasting therapeutic effect of rApoAI-PBGDms was observed after either intravenous or subcutaneous administration. These data describe a method to deliver PBGD to hepatocytes with resulting enhanced hepatic enzymatic activity and protection against AIP attacks in rodent models, suggesting that the approach might be an effective therapy for AIP.


Assuntos
Hidroximetilbilano Sintase , Porfiria Aguda Intermitente , Animais , Modelos Animais de Doenças , Terapia Genética/métodos , Hidroximetilbilano Sintase/metabolismo , Hidroximetilbilano Sintase/uso terapêutico , Camundongos , Porfiria Aguda Intermitente/tratamento farmacológico , Porfiria Aguda Intermitente/metabolismo
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203739

RESUMO

It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson's disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge. Accordingly, here we will be summarizing some insights on different AAV serotypes, and which would be the most appropriate AAV delivery route. Next, the use of AAVs for modeling synucleinopathies is highlighted, providing potential readers with a landscape view of ongoing pre-clinical and clinical initiatives pushing forward AAV-based therapeutic approaches for Parkinson's disease and related synucleinopathies.


Assuntos
Pesquisa Biomédica , Dependovirus/genética , Vetores Genéticos/uso terapêutico , Doença de Parkinson/genética , Animais , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos
7.
Hum Mol Genet ; 29(19): 3211-3223, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916704

RESUMO

The morphological changes that occur in the central nervous system of patients with severe acute intermittent porphyria (AIP) have not yet been clearly established. The aim of this work was to analyze brain involvement in patients with severe AIP without epileptic seizures or clinical posterior reversible encephalopathy syndrome, as well as in a mouse model receiving or not liver-directed gene therapy aimed at correcting the metabolic disorder. We conducted neuroradiologic studies in 8 severely affected patients (6 women) and 16 gender- and age-matched controls. Seven patients showed significant enlargement of the cerebral ventricles and decreased brain perfusion was observed during the acute attack in two patients in whom perfusion imaging data were acquired. AIP mice exhibited reduced cerebral blood flow and developed chronic dilatation of the cerebral ventricles even in the presence of slightly increased porphyrin precursors. While repeated phenobarbital-induced attacks exacerbated ventricular dilation in AIP mice, correction of the metabolic defect using liver-directed gene therapy restored brain perfusion and afforded protection against ventricular enlargement. Histological studies revealed no signs of neuronal loss but a denser neurofilament pattern in the periventricular areas, suggesting compression probably caused by imbalance in cerebrospinal fluid dynamics. In conclusion, severely affected AIP patients exhibit cerebral ventricular enlargement. Liver-directed gene therapy protected against the morphological consequences of the disease seen in the brain of AIP mice. The observational study was registered at Clinicaltrial.gov as NCT02076763.


Assuntos
Encéfalo/patologia , Ventrículos Cerebrais/patologia , Modelos Animais de Doenças , Hidroximetilbilano Sintase/genética , Porfiria Aguda Intermitente/fisiopatologia , Adulto , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Ventrículos Cerebrais/metabolismo , Ensaios Clínicos Fase I como Assunto , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/metabolismo , Estudos Prospectivos
8.
Brain Struct Funct ; 225(7): 2153-2164, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32691218

RESUMO

Endocannabinoids are neuromodulators acting on specific cannabinoid CB1 and CB2 G-protein-coupled receptors (GPCRs), representing potential therapeutic targets for neurodegenerative diseases. Cannabinoids also regulate the activity of GPR55, a recently "deorphanized" GPCR that directly interacts with CB1 and with CB2 receptors. Our hypothesis is that these heteromers may be taken as potential targets for Parkinson's disease (PD). This work aims at assessing the expression of heteromers made of GPR55 and CB1/CB2 receptors in the striatum of control and parkinsonian macaques (with and without levodopa-induced dyskinesia). For this purpose, double blind in situ proximity ligation assays, enabling the detection of GPCR heteromers in tissue samples, were performed in striatal sections of control, MPTP-treated and MPTP-treated animals rendered dyskinetic by chronic treatment with levodopa. Image analysis and statistical assessment were performed using dedicated software. We have previously demonstrated the formation of heteromers between GPR55 and CB1 receptor (CB1-GPR55_Hets), which is highly expressed in the central nervous system (CNS), but also with the CB2 receptor (CB2-GPR55_Hets). Compared to the baseline expression of CB1-GPR55_Hets in control animals, our results showed increased expression levels in basal ganglia input nuclei of MPTP-treated animals. These observed increases in CB1-GPR55_Hets returned back to baseline levels upon chronic treatment with levodopa in dyskinetic animals. Obtained data regarding CB2-GPR55_Hets were quite similar, with somehow equivalent amounts in control and dyskinetic animals, and with increased expression levels in MPTP animals. Taken together, the detected increased expression of GPR55-endocannabinoid heteromers appoints these GPCR complexes as potential non-dopaminergic targets for PD therapy.


Assuntos
Núcleo Caudado/metabolismo , Discinesias/metabolismo , Núcleo Accumbens/metabolismo , Transtornos Parkinsonianos/metabolismo , Putamen/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Modelos Animais de Doenças , Macaca fascicularis , Masculino , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
9.
Ann N Y Acad Sci ; 1475(1): 34-42, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32594556

RESUMO

The cannabinoid CB1 receptor (CB1 R) is the most abundant G protein-coupled receptor in the central nervous system, consistent with the important role of endocannabinoids as neuromodulators. Cannabinoids also modulate the function of G protein-coupled receptor 55 (GPR55), which forms heteroreceptor complexes with the CB1 R in the striatum. The aim was to characterize cannabinoid CB1 R-GPR55 heteromers (CB1 R/GPR55Hets) in the basal ganglia input nuclei of nonhuman primates, Macaca fascicularis, both in projection neurons and interneurons, by the in situ proximity ligation assay. Striatal projecting neurons were identified by the retrograde neuroanatomical tracer, biotinylated dextran amine (BDA), injected into external or internal subdivisions of the globus pallidus. Triple immunofluorescent stains were carried out to visualize (1) BDA-labeled neurons, (2) CB1 R/GPR55Hets, and (3) striatal interneurons positive for choline acetyltransferase, parvalbumin, calretinin, or nitric oxide synthase. CB1 R/GPR55Hets were identified within both types of projection neurons as well as all interneurons except those that are cholinergic. Moreover, CB1 R/GPR55Hets were found specifically in the neuronal cell surface, and also in intracellular membranes. Further research efforts will be needed to confirm the intracellular occurrence of heteromers and their potential as therapeutic targets in diseases related to motor control imbalances, particularly within a parkinsonian context (with or without levodopa-induced dyskinesia).


Assuntos
Corpo Estriado/metabolismo , Neurônios/metabolismo , Multimerização Proteica , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Anticorpos/metabolismo , Biomarcadores/metabolismo , Interneurônios/metabolismo , Macaca fascicularis , Masculino
10.
Mol Neurobiol ; 56(8): 5900-5910, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30687889

RESUMO

Cannabinoid CB1 receptors (CB1R) and the GPR55 receptor are expressed in striatum and are potential targets in the therapy of Parkinson's disease (PD), one of the most prevalent neurodegenerative diseases in developed countries. The aim of this paper was to address the potential of ligands acting on those receptors to prevent the action of a neurotoxic agent, MPP+, that specifically affects neurons of the substantia nigra due to uptake via the dopamine DAT transporter. The SH-SY5Y cell line model was used as it expresses DAT and, therefore, is able to uptake MPP+ that inhibits complex I of the respiratory mitochondrial chain and leads to cell death. Cells were transfected with cDNAs coding for either or both receptors. Receptors in cotransfected cells formed heteromers as indicated by the in situ proximity ligation assays. Cell viability was assayed by oxygen rate consumption and by the bromide-based MTT method. Assays of neuroprotection using two concentrations of MPP+ showed that cells expressing receptor heteromers were more resistant to the toxic effect. After correction by effects on cell proliferation, the CB1R antagonist, SR141716, afforded an almost full neuroprotection in CB1R-expressing cells even when a selective agonist, ACEA, was present. In contrast, SR141716 was not effective in cells expressing CB1/GPR55 heteromeric complexes. In addition, an agonist of GPR55, CID1792197, did not enhance neuroprotection in GPR55-expressing cells. These results show that neurons expressing heteromers are more resistant to cell death but question the real usefulness of CB1R, GPR55, and their heteromers as targets to afford PD-related neuroprotection.


Assuntos
Terapia de Alvo Molecular , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Ligantes , Modelos Biológicos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo
11.
Mov Disord ; 33(10): 1540-1550, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30288779

RESUMO

For many years the subthalamic nucleus had a poor reputation among neurosurgeons as a result of the acute movement disorders that develop after its lesion or manipulation through different surgical procedures. However, this nucleus is now considered a key structure in relation to parkinsonism, and it is currently one of the preferred therapeutic targets for Parkinson's disease. The implication of the subthalamic nucleus in the pathophysiology of chorea and in the parkinsonian state is thought to be related to its role in modulating the basal ganglia, a fundamental circuit in movement control. Indeed, recent findings have renewed interest in this anatomical structure. Accordingly, this review aims to present a history of the subthalamic nucleus, evolving from the classic surgical concepts associated with the avoidance of this structure, to our current understanding of its importance based on findings from more recent models. Future developments regarding the relationship of the subthalamic nucleus to neuroprotection are also discussed in this review. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Procedimentos Neurocirúrgicos/história , Procedimentos Neurocirúrgicos/métodos , Transtornos Parkinsonianos/cirurgia , Núcleo Subtalâmico/cirurgia , História do Século XIX , História do Século XX , Humanos , Núcleo Subtalâmico/fisiopatologia
12.
Glia ; 66(8): 1752-1762, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29624735

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons of the substantia nigra and the accumulation of protein aggregates, called Lewy bodies, where the most abundant is alpha-synuclein (α-SYN). Mutations of the gene that codes for α-SYN (SNCA), such as the A53T mutation, and duplications of the gene generate cases of PD with autosomal dominant inheritance. As a result of the association of inflammation with the neurodegeneration of PD, we analyzed whether overexpression of wild-type α-SYN (α-SYNWT ) or mutated α-SYN (α-SYNA53T ) are involved in the neuronal dopaminergic loss and inflammation process, along with the role of the chemokine fractalkine (CX3CL1) and its receptor (CX3CR1). We generated in vivo murine models overexpressing human α-SYNWT or α-SYNA53T in wild type (Cx3cr1+/+ ) or deficient (Cx3cr1-/- ) mice for CX3CR1 using unilateral intracerebral injection of adeno-associated viral vectors. No changes in CX3CL1 levels were observed by immunofluorescence or analysis by qRT-PCR in this model. Interestingly, the expression α-SYNWT induced dopaminergic neuronal death to a similar degree in both genotypes. However, the expression of α-SYNA53T produced an exacerbated neurodegeneration, enhanced in the Cx3cr1-/- mice. This neurodegeneration was accompanied by an increase in neuroinflammation and microgliosis as well as the production of pro-inflammatory markers, which were exacerbated in Cx3cr1-/- mice overexpressing α-SYNA53T . Furthermore, we observed that in primary microglia CX3CR1 was a critical factor in the modulation of microglial dynamics in response to α-SYNWT or α-SYNA53T . Altogether, our study reveals that CX3CR1 plays an essential role in neuroinflammation induced by α-SYNA53T .


Assuntos
Quimiocina CX3CL1/deficiência , Doenças Neurodegenerativas/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Quimiocina CX3CL1/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo
13.
Neurotherapeutics ; 15(3): 796-806, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29435814

RESUMO

Recent studies point to the cannabinoid CB2 receptors (CB2r) and the non-cannabinoid receptor GPR55 as potential key targets involved in the response to stress, anxiety, and depression. Considering the close relationship between neuropsychiatric disorders and suicide, the purpose of this study was to evaluate the potential alterations of CB2r and GPR55 in suicide victims. We analyzed gene and protein expression of both receptors by real-time PCR and western blot, respectively, in the dorsolateral prefrontal cortex (DLPFC) of 18 suicide victims with no clinical psychiatric history or treatment with anxiolytics or antidepressants, and 15 corresponding controls. We used in situ proximity ligation assay to evaluate whether the receptors formed heteromeric complexes and to determine the expression level of these heteromers, also assessing the co-expression of heteromers in neurons, astroglia, or microglia cells. CB2r and GPR55 gene expressions were significantly lower (by 33 and 41%, respectively) in the DLPFC of suicide cases. CB2r protein expression was higher, as were CB2-GPR55 heteroreceptor complexes. The results also revealed the presence of CB2-GPR55 receptor heteromers in both neurons and astrocytes, whereas microglial cells showed no expression. We did not observe any significant alterations of GPR55 protein expression. Additional studies will be necessary to evaluate if these alterations are reproducible in suicide victims diagnosed with different psychiatric disorders. Taken together, the results suggest that CB2r and GPR55 may play a relevant role in the neurobiology of suicide.


Assuntos
Córtex Pré-Frontal/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Suicídio , Adulto , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Canabinoides , Adulto Jovem
14.
Histol Histopathol ; 33(9): 909-917, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29336473

RESUMO

Immunochemical detection of G-protein-coupled receptors (GPCRs) in cells and tissues was a technical challenge for years. After the discovery of formation of GPCR dimers/trimers/tetramers in transfected cells, a most recent challenge has been to confirm receptor-receptor interactions in natural sources. The occurrence of dimers or higher order oligomers is important from a therapeutic point of view, mainly because their physiology/pharmacology is different from those of individual receptors. On the one hand, pathophysiological factors need to count more on GPCR dimers than on individual receptors. On the other hand, the expression of dimers, trimers, etc. may change in pathological conditions and/or along the course of a disease. This review will focus on G-protein-coupled receptor dimers, on how to detect them by novel histological techniques and on how the detection may be used in diagnosis and therapy of ailments of the central nervous system, for instance in neurodegenerative diseases and gliomas.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/terapia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia , Receptores Acoplados a Proteínas G/análise , Animais , Neoplasias Encefálicas/metabolismo , Membrana Celular/metabolismo , Glioma/metabolismo , Técnicas Histológicas , Humanos , Conformação Molecular , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Transmissão Sináptica
15.
Brain Behav Immun ; 67: 139-151, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843453

RESUMO

Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB1 and CB2 receptors, which may form heteromeric complexes (CB1-CB2Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB1 and circa 20 fold for CB2), whereas receptor levels were similar for CB1 and markedly upregulated for CB2; CB1-CB2Hets were also upregulated. Unlike in resting cells, CB2 receptors became robustly coupled to Gi in activated cells, in which CB1-CB2Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß1-42). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant ß-amyloid precursor protein (APPSw,Ind) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APPSw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB1-CB2Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB1-CB2Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB1-CB2 heteroreceptor complex in activated microglia have potential as targets in the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Endocanabinoides/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Levodopa/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos Wistar , Transdução de Sinais
16.
Biomaterials ; 110: 11-23, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27697668

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) remains the most potent neurotrophic factor for dopamine neurons. Despite its potential as treatment for Parkinson's disease (PD), its clinical application has been hampered by safety and efficacy concerns associated with GDNF's short in vivo half-life and with significant brain delivery obstacles. Drug formulation systems such as microparticles (MPs) may overcome these issues providing protein protection from degradation and sustained drug release over time. We therefore sought to evaluate the efficacy and safety of GDNF delivered via injectable biodegradable MPs in a clinically relevant model of PD and to investigate the mechanism contributing to their beneficial effects. MPs were injected unilaterally into the putamen of parkinsonian monkeys with severe nigrostriatal degeneration. Notably, a single administration of the microencapsulated neurotrophic factor achieved sustained GDNF levels in the brain, providing motor improvement and dopaminergic function restoration. This was reflected by a bilateral increase in the density of striatal dopaminergic neurons 9 months after treatment. Moreover, GDNF was retrogradely transported to the substantia nigra increasing bilaterally the number of dopaminergic and total neurons, regardless of the severe degeneration. GDNF-MP injection within the putamen elicited no adverse effects such as immunogenicity, cerebellar degeneration or weight loss. MPs are therefore a safe, efficient vehicle for sustained protein delivery to the brain, supporting the therapeutic benefit of GDNF when encapsulated within MPs for brain repair. Overall, these findings constitute important groundwork for GDNF-MP clinical development.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Implantes de Medicamento/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Cápsulas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Composição de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Meia-Vida , Haplorrinos , Processamento de Imagem Assistida por Computador , Injeções , Putamen , Recuperação de Função Fisiológica , Resultado do Tratamento
17.
Mol Neurobiol ; 53(8): 5436-45, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26452359

RESUMO

Dopamine receptors in striatum are important for healthy brain functioning and are the target of levodopa-based therapy in Parkinson's disease. Lateralization of dopaminergic neurotransmission in striata from different hemispheres occurs in patients, but also in healthy individuals. Our data show that the affinity of dopamine binding to dopamine D1 receptors is significantly higher in left than in right striatum. Analysis of data from radioligand binding to striatal samples from naïve, 6-hydroxydopamine lesioned, levodopa-treated and levodopa-induced dyskinetic rats shows differential receptor structure and gives hints on the causes of right/left lateralization of dopamine binding to striatal D1 receptors. Moreover, binding data showed loss of lateralization in levodopa (L-DOPA)-induced dyskinetic rats.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Lateralidade Funcional , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Discinesia Induzida por Medicamentos/metabolismo , Lateralidade Funcional/efeitos dos fármacos , Masculino , Ratos Wistar , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/metabolismo
18.
Front Neuroanat ; 9: 28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852490

RESUMO

The olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis). Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the OB of macrosmatic and microsmatic mammals.

19.
Front Neuroanat ; 9: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814937

RESUMO

OBJECTIVE: To analyze the frequency and distribution of α-synuclein deposits in progressive supranuclear palsy (PSP). METHODS: The brains of 25 cases of pathologically confirmed PSP were evaluated with immunohistochemistry for α-synuclein and tau. Multiple immunofluorescent stains were applied to analyze the expression of tau and α-synuclein aggregates in catecholaminergic neurons. Patients' clinical symptoms were retrospectively recorded. RESULTS: Deposits α-synuclein in the form of typical Lewy bodies (LBs) were only found in two PSP cases (8%) that fulfilled the clinical subtype of PSP known as Richardson's syndrome (RS). LBs were present in the locus ceruleus (LC), substantia nigra pars compacta (SNc), basal forebrain, amygdala and cingulated cortex in a distribution mimicking that of Parkinson's disease (PD). Triple-immunolabeling revealed co-expression of α-synuclein and tau proteins in some tyrosine hydroxilase (TH)-positive neurons of the LC and SNc. CONCLUSIONS: There is no apparent clinical correlation between the presence of LBs in PSP. Tau protein co-aggregate with α-synuclein in catecholaminergic neurons of PSP brains suggesting a synergistic interaction between the two proteins. This is in keeping with the current view of neurodegenerative disorders as "misfolded protein diseases".

20.
J Alzheimers Dis ; 42 Suppl 4: S561-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25125473

RESUMO

Understanding the cellular and molecular processes involved in learning and memory will help in the development of safe and effective cognitive enhancers. The cAMP response element-binding (CREB) may be a universal modulator of processes required for memory formation, and increasing the levels of second messengers like cAMP and cGMP could ultimately lead to CREB activation. Phosphodiesterase (PDE) inhibitors regulate signaling pathways by elevating cAMP and/or cGMP levels, and they have been demonstrated to improve learning and memory in a number of rodent models of impaired cognition. The aim of this review is to summarize the outstanding progress that has been made in the application of PDE inhibitors for memory dysfunction. In addition, we have introduced some recent data we generated demonstrating that tadalafil could be considered as an optimal candidate for drug re-positioning and as a good candidate to enhance cognition.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/enzimologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...